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Abstract—Context: Supervised learning-based projects (SLPs),
i.e., software projects that use supervised learning algorithms,
such as decision trees are useful for performing classification-
related tasks. Yet, security weaknesses, such as the use of hard-
coded passwords in SLPs, can make SLPs susceptible to security
attacks. A characterization of security weaknesses in SLPs can
help practitioners understand the security weaknesses that are
frequent in SLPs and adopt adequate mitigation strategies.
Objective: The goal of this paper is to help practitioners se-
curely develop supervised learning-based projects by conducting
an empirical study of security weaknesses in supervised learning-
based projects. Methodology: We conduct an empirical study by
quantifying the frequency of security weaknesses in 278 open
source SLPs. Results: We identify 22 types of security weaknesses
that occur in SLPs. We observe ‘use of potentially dangerous
function’ to be the most frequently occurring security weakness
in SLPs. Of the identified 3,964 security weaknesses, 23.79%
and 40.49% respectively, appear for source code files used to
train and test models. We also observe evidence of co-location,
e.g., instances of command injection co-locates with instances
of potentially dangerous function. Conclusion: Based on our
findings, we advocate for a shift left approach for SLP
development with security-focused code reviews, and application
of security static analysis.

Index Terms—security weakness, supervised machine learning

I. INTRODUCTION

Information technology (IT) organizations use supervised
learning (SL) algorithms, such as deep neural networks, ran-
dom forests, and support vector machines to construct models
for classification and prediction [28]. These models are used
for production, which in turn is used in diverse domains, such
as finance, healthcare, and transportation [28]. Constructed
classification and prediction models are deployed at scale, e.g.,
TransLink deployed 16,000 machine learning (ML) models in
production that were used for predicting departure and arrival
times for Vancouver bus system in Vancouver, Canada [47].

While SL algorithms are useful in constructing and de-
ploying models at scale, unmitigated security weaknesses can
provide malicious users the opportunity to conduct attacks

against SL-based projects, i.e., software projects that use SL
algorithms. Unmitigated security weaknesses in artifacts used
for SL-based projects (SLPs) can be consequential for the de-
ployed models. Therefore, mitigation of security weaknesses,
such as hard-code passwords, is pivotal to developing and
deploying SLPs. Industry practitioners have acknowledged the
importance of mitigating security weaknesses in SLPs. For
example, practitioners from Huwaei have identified mitigation
of ‘'security weaknesses in SLPs as one of the five major ar-
tificial intelligence (Al) security challenges [1]. Such concern
was also echoed in the 2020 Deloitte survey [3]: 62% of the
surveyed 2,875 IT practitioners identified security weaknesses
in Al-based projects, such as SLPs as a “a major or extreme
concern” [3], [7]. Cybersecurity experts have advocated for
shift left ML development, i.e., application of secure
development for software source code used in SLPs [16].

The first step towards integration of secure development for
SLPs is to gain an understanding of what security weaknesses
appear in SLPs. Gaining such understanding will yield a
characterization of security weaknesses in SLP development.
Let us consider Figure 1 in this regard. The code snippet
is collected from an open-source software (OSS) project !
and contains a hard-coded password (‘t5f28uhdmct7zhdr’).
According to the Common Weakness Enumeration (CWE),
“If hard-coded passwords are used, it is almost certain that
malicious users will gain access to the account in question”.
Anecdotal evidence of security weaknesses similar to Figure 1
necessitates systematic investigation of security weaknesses
that appear in SLPs. Such investigation can help practitioners
to learn about weakness categories that they need to focus
while performing security-focused code reviews. Furthermore,
an empirical investigation can identify what categories of
security weaknesses are associated with artifacts that are used
for training and testing models in SLPs.

Uhttps://github.com/mlachmish/MusicGenreClassification/blob/master/mel-
spec/code/lib/api_settings.py



oauthkey = '7dkss6x9fnbv' _
secret = 't5f28uhdmct7zhdr' <------  Use of Hard-coded Password
country = 'US'

Fig. 1: Security weakness in Python code snippet of a su-
pervised learning-based projects downloaded from an OSS
repository [8]

The goal of this paper is to help practitioners securely
develop supervised learning-based projects by conducting an
empirical study of security weaknesses in supervised learning-
based projects.

We answer the following research questions:

e RQ; [Frequency]: How frequently do security weak-
nesses occur in supervised learning-based projects?

e RQ-> [Co-location]: What security weaknesses co-locate
in supervised learning-based projects? How frequently
do security weaknesses co-locate?

o RQs [Association]: What artifacts are associated with
identified security weaknesses in supervised learning-
based projects?

We conduct an empirical study with 278 open source SLPs
that consists of 36,022 Python scripts. We use a qualitative
analysis technique called closed coding [41] to quantify se-
curity weaknesses in SLPs by mapping instances of security
weaknesses to CWE entries [4]. Next, we quantify what
security weakness types are co-located in SLPs. We also
identify what categories of security weaknesses appear for
Python scripts in SLPs are used to implement for training
and testing. Datasets and source code used to conduct our
empirical study is available online [19].

Contributions: We list our contributions as follows:

o An empirical evaluation of how frequently security weak-
nesses appear in supervised learning-based projects;

o An evaluation of how frequently security weaknesses co-
locate in Python scripts for supervised learning-based
projects; and

« An analysis of security weaknesses appeared in training and
testing scripts in supervised learning-based projects.

II. BACKGROUND & RELATED WORK
A. Background

We provide the necessary background information below:
Machine Learning: ML is the domain that facilitates com-
puter programs to learn autonomously from real-world in-
teractions and experiences through data that we feed them
without being explicitly programmed [26]. Depending on what
type of feedback is available to the learning system, ML
techniques are divided into three broad categories: supervised
learning, unsupervised learning and reinforcement learning.
Supervised learning algorithms build a mathematical model
of a data set that includes both inputs and outputs [40]. The
data is known as training data and consists of a set of training
examples. Unsupervised learning algorithms take a data set
that contains only inputs and find structure or commonality
in data, such as data point grouping or clustering [23]. Unsu-
pervised algorithms learn from unlabeled data, known as test

data. Reinforcement learning is an ML area concerned with
how software agents should take action in an environment to
maximize the notion of cumulative reward [46].

Common Weakness Enumeration: CWE is a list of common
software security weaknesses and vulnerabilities compiled by
the software community. The goal of this list is to understand
security weaknesses in software, to develop automated tools
to automatically identify and repair security weaknesses in
software, and to develop a common baseline standard for
security weakness identification, mitigation, and prevention
efforts [4]. The MITRE Corporation owns the list, with support
from US-CERT and the National Cyber Security Division of
the United States Department of Homeland Security [4].

B. Related Work

Our paper is related to publications that have investigated
secure development of ML as well as publications that have
investigated security weaknesses in different types of software.
ML has become so interconnected with security that the ability
of the technical community to implement ML in a secure
manner will be vital to future environments [32]. Sculley et
al. [42] reported that it is common to incur massive ongoing
maintenance costs in real-world ML systems, as they have
all of the maintenance problems of traditional code plus
an additional set of ML-specific issues. Amershi et al. [18]
reported that the management and evaluation of data are
among the most challenging tasks when developing an Al
application in Microsoft. Kumar et al. [43] identified gaps
in secure development of ML. Chen et al. [21] presented a
comprehensive study on understanding challenges faced by
developers in deploying Deep Learning-based software. Riccio
et al. [39] conducted a systematic mapping study using 70
papers about testing techniques for ML systems and suggested
that novel testing techniques need to be devised to account
for the peculiar characteristics of ML-based systems. Islam et
al. [25] performed a comprehensive study of bug fix patterns
for five popular deep learning libraries and revealed that deep
neural network bug fix patterns are distinctive compared to
traditional bug fix patterns.

Our paper is closely related to the paper of Zhang et
al. [48]. Zhang et al. [48] performed an empirical study to
find the prevalence of the CWEs in code snippets of C/C++
related answers on Stack Overflow. The authors found the
types of code weaknesses present in C/C++ on Stack Overflow
and characterized how the code weaknesses evolve through
revisions. Zhao et al. [49] conducted an empirical analysis
on two web vulnerability discovery ecosystems (Wooyun and
HackerOne) and studied their characteristics, trajectory, and
impact as well as the vulnerability trends, response and resolve
behaviors of those systems. Rahman et al. [37] conducted
a qualitative analysis on 1,726 Infrastructure as Code (IaC)
scripts and identified seven security weaknesses. Alfadel et
al. [17] conducted an empirical study of 550 vulnerability
reports affecting 252 Python packages in the Python ecosystem
(PyPi). Similar to our process, they also examine the different
vulnerability types given by the CWE that PyPi packages have



and found that packages in the PyPi ecosystem are affected by
90 distinct CWEs, with CWE-79: Cross-Site-Scripting (XSS)
being the most frequent one. While our methodology is similar
to this work, our work focuses on security weaknesses in SLPs
and what artifacts are associated with the security weaknesses.

Our discussion shows a plethora of research related to
secure development of ML and other software systems. How-
ever, a lack of research exists that discusses what security
weaknesses are prevalent in SLPs and what artifacts are
associated with the security weaknesses. We address these
research gaps in our empirical study.

III. RQ;: FREQUENCY OF SECURITY WEAKNESSES

In this section, we answer RQ1: How frequently do security
weaknesses occur in supervised learning-based projects? First,
we provide the methodology to answer RQ; in Section III-A.
Then, we provide our findings in Section III-B.

A. Methodology to Answer RQ1

1) Repository Mining: We answer RQ; by mining (i) OSS
GitHub repositories, (ii)) OSS GitLab repositories, and (iii)
ModelZoo repositories. We assume that by using software
projects maintained by multiple repositories, we will be able
to analyze a diverse set of projects that are reflective of real-
world supervised learning usage, which could increase the
generalizability of our findings.

We apply filtering criteria to identify repositories: Criterion-
1: We select repositories where the percentage of Python
scripts is greater than 50% of total scripts in the repository.
Criterion-2: We select repositories with at least 5 commits per
month as it indicates these repositories have enough develop-
ment activities. Criterion-3: We select repositories that have at
least 10 contributors. Criterion-4: Since we are interested in
supervised learning-based development, we select only those
repositories that are related to SLPs. We inspect the README
file for each repository to determine if the repository uses
supervised learning algorithms, such as decision trees. We use
README files because README files describe the content of
the project to select the supervised learning-based repositories
[36]. Using all the above criteria, we collected 109, 66,
and 103 repositories, respectively for GitHub, GitLab, and
ModelZoo datasets. Attributes of the repositories are available
in Table L.

TABLE I: Attribute of the Three Datasets
Attribute GITHUB GITLAB MODELZOO
Total Repositories 109 66 103

Total Commits 4,03,196 65,714 11,662
Total Python Scripts 23,517 9,331 3,174
Total LOC of Python Scripts 69,53,013 17,36,138 6,11,577

2) Methodology of Mapping: We identify security weak-
nesses in SLPs by (i) first applying a static analysis tool
called Bandit [2], (ii) filtering out false positive (FP) instances,
and (iii) mapping the identified true positive (TP) instances to
CWE types.

Application of Security Static Analysis: We use a static
analysis tool called Bandit for this step. The advantage of

static analysis is that it can find potential security violations
without executing the application [30]. Static analysis tools
locate and report on potential security weaknesses even before
the code executes, making these tools a great resource for early
indicators of security weaknesses [33]. Bandit [2] is a static
analysis tool designed to find security issues in Python. Bandit
scans Python scripts for any known security weaknesses and
then provides explicit feedback about what it found, the
severity of the problem, and how confident it is in its discovery.
We select Bandit as our static analysis tool because prior
research [27], [34], [38] has reported Bandit to perform well
for finding security weaknesses in Python programs.

Filtering False Positive (FP) Instances: Static analysis tools
are susceptible to FP instances [12]. Bandit tools might
identify issues that are not actually security weaknesses. We
need to filter out these FPs. We inspect the generated alerts,
and the coding patterns for which the alert is generated. We
read the source code where the alert appears to identify coding
patterns to determine if the Bandit-generated alert is a TP or
a FP.

Mapping to CWEs: After isolating Bandit generated alerts
that are TP instances, we map the alerts to CWE entries.
While mapping the alerts to CWE types, we apply a qualitative
analysis technique called closed coding [41]. As part of closed
coding a rater maps an entity to a pre-defined category [41].
The first author, who has four years of experience in software
engineering and software security, performs closed coding. In
particular, the first author maps each of the TP security alerts
to one or multiple potential security weaknesses indexed in
CWE [4]. We map to CWE types because CWE maintains a
list of common software security weaknesses developed and
maintained by software security experts. A mapping between
a security issue identified by the static analysis tool and a
security weakness reported by CWE can validate our quali-
tative process. During the mapping multiple CWE categories
can map to one Bandit alert.

Rater Verification: Since the closed coding process is sub-
jective, we use another rater along with the first author to
perform the mapping process on 50 randomly selected Python
scripts from our dataset. The rater separately maps each of the
identified security issues to one or multiple entries in the CWE
dictionary. Upon completing the mapping process, we record
the agreements and disagreements for the identified CWEs and
calculate 83.33% agreement between the first author and the
rater.

3) Frequency Metrics: We answer RQ; using three metrics:
(i) Count, (ii) Proportion of Scripts (PropScript), and (iii)
Density. Using the ‘PropScript(z)’ metric, we quantify the
proportion of scripts that are identified as having one or more
types of security weaknesses. Using the ‘Density(z)’ metric,
we quantify the frequency of the presence of each CWEs. We
use Equations 1 and 2 respectively, to calculate ‘PropScript’
and ‘Density’.



PropScript(z) =

# of scripts with >= 1 security weaknesses of CWE-x (1)

* 100%

total Python scripts in the repository

Density(z) =
# of security weaknesses with CWE-z )

total LOC in the repository
1000

B. Answer to RQ1

1) Security Weaknesses in SLPs: We get 52 Bandit alerts
that we map to 22 CWE types. In this section, we describe
the 22 identified security weaknesses. In Table II, we present
the 22 CWE IDs, CWE names, corresponding Bandit alerts,
and example code snippets.

CWE-61: UNIX Symbolic Link (Symlink) Following When
opening a file, if the file is a symbolic link that resolves
to a target outside of the intended control sphere, an at-
tacker could cause the software to run on unauthorized files
known as the symlink attack [4]. Python functions, such
as os.tempnam() and os.tmpnam () are vulnerable to
symlink attacks [10].

CWE-77: Improper Neutralization of Special Elements
used in a Command (‘Command Injection’) A command
injection attack may occur if a software constructs a command
using externally influenced input but does not neutralize or
incorrectly neutralizes special elements that could modify the
intended command [4]. Python has mechanisms for calling
an external executable. However, doing so may pose a se-
curity risk if proper precautions are not taken to sanitize
any user-provided or variable input. For example, spawning
a subprocess with a command shell is dangerous because it is
vulnerable to various shell injection attacks.

CWE-78: Improper Neutralization of Special Elements
used in an OS Command (COS Command Injection’)
If a software constructs an OS command using externally-
influenced input, but does not neutralize or incorrectly neu-
tralizes special elements that could modify the intended OS
command, it may allow attackers to execute unexpected,
dangerous commands directly on the operating system [4].
With commands, such as exec (), attackers can download,
decrypt, and execute malicious code.

CWE-79: Improper Neutralization of Input During Web
Page Generation (’Cross-site Scripting’) If a software fails
to neutralize or incorrectly neutralizes user-controllable in-
put that is used as a web page, cross-site scripting (XSS)
vulnerabilities may occur [4]. Jinja2 and Mako are Python
HTML templating systems that are typically used to build
web applications [2]. If the environment of these system are
not configured correctly, the application becomes vulnerable
to Cross-site Scripting (XSS) attacks.

CWE-89: Improper Sanitization of Special Elements used
in an SQL Command (‘SQL Injection’) A software may
construct an SQL command using externally-influenced input.
If the software does not neutralize or incorrectly neutralizes
particular elements that could modify the intended SQL com-
mand, SQL Injection attacks may occur [4]. SQL related

commands in Python, such as django_extra_used and
django_rawsqgl_used might cause SQL Injection attacks
[13].

CWE-91: XML Injection If a software fails to properly neu-
tralize XML special elements, attackers can modify the syntax,
content, or commands of the XML before it is processed by
an end system [4]. Using various XML methods in Python
scripts to parse untrusted XML data is known to be vulnerable
to XML attacks [5].

CWE-220: Storage of File With Sensitive Data Under FTP
Root If an application stores sensitive data under the FTP
server root with insufficient access control, attackers may be
able to access the application [4]. If FTP-related functions are
called in Python scripts, it could lead to a security issue.
CWE-242: Use of Inherently Dangerous Function Certain
functions that are insecure and deprecated behave in dangerous
ways regardless of how they are used [4]. In Python, mktemp
is an example of such an insecure function.

CWE-259: Use of Hard-coded Password Hard-coded pass-
words typically leave a significant hole in the authentication
system, allowing an attacker to bypass the authentication
system [4]. The use of hard-coded passwords in Python scripts
greatly increases the possibility of password guessing.
CWE-269: Improper Privilege Management If a software
fails to properly assign, modify, track, or check privileges for
an actor, an attacker may gain unintended sphere of control
[4]. Python uses the command chmod to manipulate POSIX
style permissions [2]. If chmod is used to set particularly
permissive control flags, it may create an unintended sphere
of control for that actor.

CWE-285: Improper Authorization If a software does not
perform or incorrectly performs an authorization check when
an actor attempts to access a resource or perform an action,
it can lead to a wide range of problems, such as information
exposures, denial of service, and arbitrary code execution [4].
A string pattern ‘0.0.0.0 indicates a hard-coded binding to all
network interfaces. In Python, binding to all network interfaces
has the potential to expose a service to traffic on unintended
interfaces that may not be properly secured.

CWE-295: Improper Certificate Validation If a software
does not validate or incorrectly validates a certificate, an
attacker might be able to spoof a trusted entity [4]. In Python,
certificate validation can be explicitly turned off, which might
enable attacks. Python functions, such as unverified_context
may also allow using an insecure context that does not validate
certificates or perform hostname checks.

CWE-319: Cleartext Transmission of Sensitive Informa-
tion If a software transmits sensitive or security-critical data
in cleartext in a communication channel, the data can be
sniffed by unauthorized actors [4]. Use of Python function
HTTPSConnection on older versions of Python prior to
2.7.9 and 3.4.3 leaves connections open to potential man-in-
the-middle attacks [11].

CWE-326: Inadequate Encryption Strength A weak encryp-
tion scheme, such as the use of insecure MD2, MD4, MD5, or
SHAT1 hash function, can be subjected to brute force attacks.



TABLE II: Identified CWEs with Examples in Our Collection of Supervised Learning-based Projects

CWE-ID CWE Name Bandit Alert Name Example Code Snippet
CWE-61 UNIX Symbolic Link (Symlink) Fol- B325:blacklist dst_temp_filename=
lowing os.tempnam (dst_path)
CWE-77 Improper Neutralization of Special Ele- B602:subprocess_popen_with_shell_equals_true, subprocess.call ([cmd], shell=True)
ments used in a Command ("Command B603:subprocess_without_shell_equals_true,
Injection’) B604:any_other_function_with_shell_equals_true,
B605:start_process_with_a_shell,
B607:start_process_with_partial_path
CWE-78 Improper Neutralization of Special El- B102:exec_used exec ("import cores.symbols." +
ements used in an OS Command ("OS model_name)
Command Injection’)
CWE-79 Improper Neutralization of Input Dur- B701:jinja2_autoescape_false, mako.template (filename=filepath)
ing Web Page Generation (’Cross-site B702:use_of_mako_templates
Scripting’)
CWE-89 Improper Sanitization of Special Ele- B610:django_extra_used, select.append ( (RawSQL (sgl, params),
ments used in an SQL Command ("SQL B611:django_rawsql_used, alias))
Injection”) B703:django_mark_safe
CWE-91 XML Injection B313:blacklist, B314:blacklist, B318:blacklist, ElementTree.iterparse (file,
B319:blacklist, B320:blacklist, B405:blacklist, events=("start", "end"))
B406:blacklist, B408:blacklist, B409:blacklist,
B410:blacklist, B411:blacklist
CWE-220 Storage of File With Sensitive Data B321:blacklist, B402:blacklist self.ftp = ftplib.FTP ()
Under FTP Root
CWE-242 Use of Inherently Dangerous Function B306:blacklist check_path = tempfile.mktemp ()
CWE-259 Use of Hard-coded Password B105:hardcoded_password_string, _TOKEN = "[UNK]"
B106:hardcoded_password_funcarg,
B107:hardcoded_password_default
CWE-269 Improper Privilege Management B103:set_bad_file_permissions os.chmod (stdout_dir, 00775)
CWE-285 Improper Authorization B104:hardcoded_bind_all_interfaces host: str = "0.0.0.0"
CWE-295 Improper Certificate Validation B323:blacklist, B504:ssl_with_no_version context = ssl.unverified_context ()
CWE-319 Cleartext Transmission of Sensitive In- B501:request_with_no_cert_validation, requests.get (remote_url, verify=False)
formation B309:blacklist
CWE-326 Inadequate Encryption Strength B303:blacklist, BS05:weak_cryptographic_key private_key = RSA.generate (1024)
CWE-338 Use of Cryptographically Weak B311:blacklist colors[cls_id] = (random.random/())
Pseudo-Random Number Generator
(PRNG)
CWE-377 Insecure Temporary File B108:hardcoded_tmp_directory MODEL_DIR = ' /tmp/imagenet’
CWE-477 Use of Obsolete Function B413:blacklist from Crypto.PublicKey import RSA
CWE-489 Active Debug Code B201:flask_debug_true app.run (host=cfg.host, port=cfg.port,
debug=True, use_reloader=False)
CWE-601 URL Redirection to Untrusted Site B310:blacklist urllib.request.urlretrieve (file_url,
(’Open Redirect’) filename=out_file)
CWE-676 Use of Potentially Dangerous Function B301:blacklist, B302:blacklist, B307:blacklist, tmp_dict = pickle.load (f)
B308:blacklist, B403:blacklist, B404:blacklist,
B506:yaml_load
CWE-755 Improper Handling of Exceptional Con- B110:try_except_pass, try: coco_utils.coco.download (images_dir,
ditions B112:try_except_continue [pic_id]) except: pass #skip
CWE-798 Use of Hard-coded Credentials B105:hardcoded_password_string, _TOKEN = "[UNK]"

B106:hardcoded_password_funcarg,
B107:hardcoded_password_default

Moreover, the recommended key length size for RSA and DSA
algorithms is 2048 and higher. Using keys of length 1024 bits
or below in Python scripts is considered breakable [2].
CWE-338: Use of Cryptographically Weak Pseudo-
Random Number Generator (PRNG) When a non-
cryptographic PRNG is used in a cryptographic context, it
can expose the cryptography to certain types of attacks.
Standard pseudo-random generators in Python are not suitable
for security or cryptographic purposes [2].

CWE-377: Insecure Temporary File Creating and using
insecure temporary files can expose application and system
data vulnerable to attacks [4]. Creating temporary files in
Python without following the proper rules [9] is dangerous
as an attacker may also create a file with this name to attempt
to load the wrong data or expose other temporary data.
CWE-477: Use of Obsolete Function If a software uses

deprecated or obsolete functions, it is vulnerable to security
issues [4]. Python libraries, such as pycrypto have been
deprecated, and usage of such libraries can cause security
issues.

CWE-489: Active Debug Code If a software is deployed
with debugging code still enabled or active, it may create
unintended entry points or expose sensitive data [4]. In Python,
running Flask [6] applications in debug mode activates a
debugger that allows arbitrary code execution. Documentation
for Flask [6] strongly suggests that debug mode should never
be enabled on production systems.

CWE-601: URL Redirection to Untrusted Site (‘Open
Redirect’) An HTTP parameter may contain a URL value and
may cause the web application to redirect the request to the
specified URL. An attacker can successfully launch a phishing



TABLE III: Answer to RQ;: Frequency of Security Weaknesses

Count PropScript (Per Script) Density

CWEs GITHUB GITLAB MODELZOO | GITHUB GITLAB MODELZOO | GITHUB GITLAB MODELZOO
CWE-61 1 0 0 le—3 0.00 0.00 7.75 0.00 0.00
CWE-77 368 131 52 1.63 1.26 3.15 0.10 0.09 0.28
CWE-78 83 97 6 0.35 1.38 0.25 0.02 0.08 0.02
CWE-79 2 0 1 0.02 0.00 0.09 2e — 3 0.00 0.01
CWE-89 25 0 0 0.04 0.00 0.00 2e — 3 0.00 0.00
CWE-91 182 17 8 1.11 0.14 0.10 0.08 0.09 0.01
CWE-220 3 0 0 0.01 0.00 0.00 3e—4 0.00 0.00
CWE-242 1 7 1 2e — 5 0.09 0.03 2e — 5 4e —3 3e—3
CWE-259 64 32 14 0.51 0.12 0.53 0.04 0.01 0.02
CWE-269 0 2 3 0.00 0.06 0.36 0.00 5e — 3 0.02
CWE-285 18 26 6 0.08 0.14 0.36 0.01 0.01 0.04
CWE-295 1 2 0 0.01 0.02 0.00 8e — 4 le—3 0.00
CWE-319 3 0 0 0.03 0.00 0.00 2e — 3 0.00 0.00
CWE-326 59 35 4 0.38 0.35 0.21 0.02 0.02 0.01
CWE-338 179 232 98 0.94 2.12 4.76 0.06 0.18 0.31
CWE-377 69 100 51 0.53 2.49 0.32 0.04 0.19 0.02
CWE-477 6 0 0 0.06 0.00 0.00 le—3 0.00 0.00
CWE-489 2 0 1 0.01 0.00 0.02 6e — 4 0.00 3e—3
CWE-601 83 63 24 0.54 0.98 0.85 0.04 0.08 0.05
CWE-676 789 401 138 442 5.00 7.00 0.30 0.44 0.53
CWE-755 254 76 34 1.77 0.49 1.24 0.09 0.03 0.10
CWE-798 64 32 14 0.51 0.12 0.53 0.04 0.01 0.02
Total 2,256 1,253 455 9.22 12.16 15.90 0.85 1.17 1.43

scam and steal user credentials by changing the URL value to
a malicious site. Using the audit URL in Python may result
in a phishing attack.

CWE-676: Use of Potentially Dangerous Function If a
program invokes a potentially dangerous function, it could
introduce a vulnerability if it is used incorrectly, but the
function can also be used safely [4]. Python calls and modules,
such as using Pickle can be unsafe when used to deserialize
untrusted data, which is a possible security issue.

CWE-755: Improper Handling of Exceptional Conditions
If a software does not handle or incorrectly handles an excep-
tional condition, it creates a security risk [4]. An exception
object is raised in the event of an error and can be caught at
a later point in the program for error handling or performing
logging actions. However, it is possible to catch an exception
and silently ignore it, representing a potential security issue.
CWE-798: Use of Hard-coded Credentials Hard-coded cre-
dentials, such as hard-coded passwords leave a significant hole
in the authentication system, allowing an attacker to bypass the
authentication system [4]. The use of hard-coded credentials
in Python scripts greatly increases the possibility of password
guessing.

2) Frequency Analysis: We identify 3,964 instances of
security weaknesses in 278 OSS repositories for supervised
learning. The most frequent security weakness is the CWE-
676: Use of Potentially Dangerous Function. A breakdown of
the CWE count for the three datasets is provided in Table III.
The highlighted cells in green indicate the most frequently
occurring weaknesses for a Dataset. Considering all CWEs,
the total count of identified security weaknesses is 2,256 for
GitHub, 1,253 for GitLab and 455 for ModelZoo as shown in
‘Total’ for Table III.

In the ‘PropScript (Per Script)’ column of Table III, we
report the ‘PropScript’ metric. The ‘Total’ row presents the
‘PropScript’ for each dataset when all 22 CWEs are consid-

ered. For all three datasets, we observe CWE-676 to occur
more frequently. On the other hand, CWE-61, CWE-220
and CWE-477 occur rarely. We observe 9.22%, 12.16% and
15.90% scripts, respectively for GitHub, GitLab, and Model-
Zoo repositories to contain at least one CWE, as shown in the
‘PropScript’ column. We describe the value for the ‘Density’
metric in the column ‘Density’ of Table III. Considering all
22 CWEs, the ‘Density’ metric values are 0.85, 1.17 and 1.43,
respectively for GitHub, GitLab, and ModelZoo repositories.
We observe the highest ‘Density’ value for the types CWE-
61 and CWE-676, respectively for GitHub and the other two
datasets.

IV. RQs: CO-LOCATION ANALYSIS OF SECURITY
WEAKNESSES

In this section, we answer RQs: What security weaknesses
co-locate in supervised learning-based projects? How fre-
quently do security weaknesses co-locate?  According to
prior research [20], [29] security weaknesses can co-locate in
software source code. Our hypothesis is that Python scripts
used in SLPs can also include occurrences of co-located
security weaknesses. A characterization of co-located secu-
rity weaknesses can help practitioners prioritize code review
efforts, for example, they can allocate more inspection efforts
on Python scripts that include co-located security weaknesses.
We observe anecdotal evidence regarding co-located security
weaknesses: Figure 2 presents a code snippet used in a SLP
2 where two CWEs are located on the same Python script:
one instance of CWE-269 and one instance of CWE-676. The
co-located instance is (CWE-269, CWE-676).

A. Methodology to Answer RQs

We analyze the co-location of security weaknesses by
collecting datasets from Section III. Summary attributes of

Zhttps://github.com/NVIDIA/waveglow/blob/master/distributed.py



------------------------------

import subprocess <--------- 1 Use of Potentially Dangerous Function !
def main(config, stdout_dir, args_str) :
if not os.path.isdir(stdout_dir):
os.makedirs(stdout_dir)

Fig. 2: Co-located security weaknesses in Python code snippet
downloaded from an OSS repository [8]

our datasets are available in Table IV.

TABLE IV: Attributes of the three datasets

GITHUB GITLAB MODELZOO
21,891 8,341 2,808
1,626 990 366

Attribute
Number of scripts with no CWE
Number of scripts with>= 1 CWEs

Frequency Metric: We characterize how frequently security
weaknesses co-locate using a metric called ‘Co-located Prop
(z, y)’, which stands for the proportion of identified CWE
instances of type x that co-locate with CWE type y. For each
security weakness x, we calculate the percentage of times its
presence in a Python script co-occur with another type of
security weakness y. ‘Co-located Prop (z, y)’ and ‘Co-located
Prop (y, )’ might have different values, as the denominator
in Equation 3 would be different.

Co-located Prop (z, y) =
# of occurrence with co-located (CWE-x, CWE-y)
# of occurrence of CWE-z

* 100%
(3)

B. Answer to RQs

We present the co-located security weaknesses along with
their ‘Co-located prop.” values for GitHub, GitLab, and Mod-
elZoo respectively, in Tables V, VI and VII. For example,
from Table VII we observe one co-location category (CWE-
269, CWE-676), with a ‘Co-located Prop.” value of 33.33%.
The ‘Co-located Prop.” value indicates that the presence of
CWE-269 implies the presence of CWE-676 33.33% of the
time in the ModelZoo dataset.

In Tables V, VI and VII, we highlight the cells that has
‘Co-located Prop.” value of greater than 50% with green color.
For all three datasets, we observe CWE-77 to be co-located
with CWE-676 with a high ‘Co-located Prop.” value. We can
conclude that, if there is a CWE-77 in a Python script, it is
likely that CWE-676 will also be in the script with a 50%
chance. Co-location proportion can be as high as 100%, as
it occurred for CWE-61 in the GitHub dataset, where CWE-
61 is co-located with CWE-601, CWE-676, and CWE-755.
We also notice co-location proportion to be 100% between
CWE-259 and CWE-798, which occurs due to the mapping
of hard-coded password to two CWEs, namely CWE-259 and
CWE-798.

V. RQ3: ASSOCIATION OF IDENTIFIED SECURITY
WEAKNESSES WITH ARTIFACTS USED FOR TRAINING AND
TESTING ML MODELS

In this section, we answer RQs: What artifacts are as-
sociated with identified security weaknesses in supervised
learning-based projects? Our hypothesis is that security weak-
nesses that appear in artifacts for training and testing can
help malicious users the opportunity to conduct attacks against
production-level ML models. We first provide the methodol-
ogy to answer RQs in Section V-A. Then, we provide our
findings in Section V-B.

A. Methodology to Answer RQs

To answer RQ3, we associate (i) scripts that are related to
model training process (train_script) and (ii) scripts that are
related to model testing process (test_script) with our identified
22 security weakness categories. We collect the scripts associ-
ated with the 3,964 instances of security weaknesses collected
in Section III. To find out whether a script is related to training
or testing, we inspect the script name. Our assumption is that
a script that has the word ‘train’ and ‘test’ in it’s name is
respectively related to training and testing. For example, a
script named ‘train.py’ is related to a model training process.
For the other scripts that are associated with the identified
security weaknesses but do not have the the word ‘train’ or
‘test’ in it’s name, we use the script content to find the words
‘train” and ‘test’. Our assumption is that a script that has the
word ‘train’ and ‘test’ in it’s content is respectively related
to training and testing. However, this process may have some
false positives. Therefore, we manually check the contents of
all the scripts that are identified to be related to training and
testing and rule out the false positives.

B. Answer to RQs3

In all, we identify 3569 train_scripts and 12,188 test_scripts
from our set of 36,022 Python scripts. We observe 210
train_script and 169 test_script to have at least one secu-
rity weakness. We report our findings in Table VIII. In
the ‘TRAIN’ and ‘TEST’ columns, we respectively report
the number of train_script and test_script associated with
each security weakness category. We observe 23.79% and
40.49% of security weaknesses are respectively associated
with train_script and test_script. Among these, 15.04% of total
security weaknesses are associated with both train_script and
test_script. The rest of the security weaknesses are not asso-
ciated with train_script or test_script. We observe CWE-676:
Use of Potentially Dangerous Function to be the most frequent
security weakness for both train_script and test_script.

VI. DISCUSSION

In this section, we discuss the implications of our findings:
Implications for practitioners: Our findings have implica-
tions for practitioners.

Incorporating security in early stages of development
for secure ML: Similar to secure software development, ML-
based projects also need to integrate security early in the




TABLE V: Answer to RQ2: Proportion of Co-located Security Weaknesses for the GitHub Dataset.

CWE-ID | 61 77 78 79 89 91 220 242 259 269 285 295 319 326 338 377 477 489 601 676 755 798
61 X 100 X X X X X X X X X X X X X X X X 100 100 100 X
7710.27 X 299 X X 217 X X 08 X X X 027 136 19 19 X X 272 8261 625 0.82
78 X 13.25 X X X X 12 X X X X X X 361 241 X X X 1.2 31.33 843 X
79 X X X X X X X X X X X X X X X X X X X X X X
89 X X X X X X X X 4 X X X X X 4 X X X X 92 X 4
91 X 4.4 X X X X X X X X X X 055 X 165 1.1 X X 165 1264 3.85 X

220 X X 3333 X X X X X X X X X X 3333 X X X X X X X X
242 X X X X X X X X X X X X X X X X X X X X X X
259 X 4.69 X X 156 X X X X X 3.12 1.56 X 156 X 1.56 X X X 1094 781 100
269 X X X X X X X X X X X X X X X X X X X X X X
285 X X X X X X X X 1111 X X X X X 556 X X 11.11 X 11.11 X 11.11
295 X X X X X X X X 100 X X X X X X X X X X X X 100
319 X 3333 X X X 3333 X X X X X X X X X X X X 66.67 33.33 X X
326 X 847 508 X X X 169 X 169 X X X X X 6.78 X 3.39 X 678 2034 339 1.69
338 X 391 112 X 056 1.68 X X X X 0.56 X X 223 X 279 1.12 0.56 X 95 6.15 X
371 X 10.14 X X X 29 X X 14 X X X X X 725 X X X 145 11.59 8.7 145
477 X X X X X X X X X X X X X 33.33 33.33 X X X X X 16.67 X
489 X X X X X X X X X X 100 X X X 50 X X X X 100 X X
601 | 1.2 12.05 12 X X 3.6l X X X X X X 241 482 X 12 X X X 241 482 X
676 |0.13 38.53 33 X 292 292 X X 08 X 025 X 013 152 215 1.01 X 025 253 X 748 0.89
7551039 9.06 276 X X 276 X X 197 X X X X 079 433 236 0.39 X 1.57 23.23 X 197
798 X 4.69 X X 1.56 X X X 100 X 3.12 1.56 X 1.56 X 1.56 X X X 1094 17.81 X
TABLE VI: Answer to RQ2: Proportion of Co-located Security Weaknesses for the GitLab Dataset.

CWE-ID | 61 77 78 79 89 91 220 242 259 269 285 295 319 326 338 377 477 489 601 676 755 798

61| X X X X X X X X X X X X X X X X X X X X X X

77 X X 076 X X X X 153 153 0.76 0.76 X X 687 153 229 X X 687 7481 6.11 1.53

78| X 1.03 X X X X X X X X X X X X 1.03 X X X X 1237 4.12 X

79| X X X X X X X X X X X X X X X X X X X X X X

89| X X X X X X X X X X X X X X X X X X X X X X

91| X X X X X X X X X X X X X X X 58 X X X 2353 X X

220 X X X X X X X X X X X X X X X X X X X X X X

242 | X 28.57 X X X X X X X X X XX X 28.57 X X X X 42.86 14.29 X

259 | X 6.25 X X X X X X X X X X X X 938 X X X X 625 X 100

269 | X 50 X X X X X X X X X X X X X 50 X X X 50 X X

285| X 3.85 X X X X X X X X X X X X 385 X X X 38 769 7.69 X

295 | X X X X X X X X X X X X X X X X X X 100 X X X

39| X X X X X X X X X X X X X X X X X X X X X X

326 | X 25.71 X X X X X X X X X X X X X 2571 X X 3143 2571 X X

3381 X 086 043 X X X X 086 1.29 X 043 X X X X 08 X X 08 69 043 129

377 X 3 X X X 1 X X X 1 X X X 9 2 X X X 10 5 1 X

477 X X X X X X X X X X X X X X X X X X X X X X

489 | X X X X X X X X X X X X X X X X X X X X X X

601 | X 14.29 X X X X X X X X 159 317 X 1746 3.17 1587 X X X 17.46 X X

676 | X 2444 299 X X 1 X 075 05 025 05 X X 224 39 125 X X 274 X 524 05

7551 X 1053 526 X X X X 132 X X 263 X X X 132 132 X X X 27.63 X X

798| X 625 X X X X X X 100 X X X X X 938 X X X X 625 X X

development process [42]. We have identified a catalog of
22 security weakness categories, as reported in Table II, that
needs to be detected and mitigated before the deployment of
SLPs. There are existing techniques that can be leveraged to
automatically repair security weaknesses [15] [35] [24]. The
fact that these identified weaknesses are not fixed is evidence
that security is not addressed from the beginning of the MI-
based software development life cycle. Practitioners can use
our findings reported in Sections III-B and V-B to incorporate
security in the early stages of development for secure SLPs.

Weakness Mitigation: We recommend the following strate-
gies to mitigate security weaknesses in SLPs:

Code Review: Practitioners need to follow rigorous code
review practices to avoid weaknesses, such as, CWE-755:
Improper Handling of Exceptional Conditions and CWE-
259: Use of Hard-coded Password. To better handle security

weaknesses such as, CWE-259: Use of Hard-coded Password,
practitioner can use secrets and encryption management tools
such as, HashiCorp Vault [14].

Static Analysis: Practitioners can use static analysis tech-
niques to detect the security weaknesses identified in Section
III-B. Therefore, we recommend to integrate static analysis
into the development process of SLPs.

Vulnerability Repair Tools: Practitioners can use automatic
vulnerability repair tools, such as Pasan [44], Bovinspector
[22], and VeraCode [15], that will identify security weaknesses
as well as suggest appropriate fixes. Pasan [44] works by
detecting the inputs used in adversarial attacks and then using
these inputs to generate fixes that remove the vulnerabilities
exploited in the attacks, whereas BovInspector [22] uses static
analysis and symbolic execution to analyze buffer overflow
threats and suggests fixes.




TABLE VII: Answer to RQ2: Proportion of Co-located Security Weaknesses for the ModelZoo Dataset.

CWE-ID | 61 77 78 79 89 91 220 242 259 269 285 295 319 326 338 377 477 489 601 676 755 798
61| X X X X X X X X X X X X X X X X X X X X X X
77| X X X 192 X X X X X192 X X X X 577 X X X 577 5192 7.69 X
78| X XX XX X X X X X X X X X X X X X X X X X
791 X 100 X X X X X X X X X X X X X X X X X X X X
89| X XX XX X X X X X X X X X X X X X X X X X
91| X XX XX X X X X X X X X X 125 X X X X 125 X X

220 X X X X X X X X X X X X X X X X X X X X X X
2421 X XX XX X X X X X X X X X X 100 X X X X X X
259 | X XX XX X X X X X X X X X X X X X X 1429 X 100
269 | X 3333 X X X X X X X X X X X X 3333 X X X X 3333 X X
2851 X XX XX X X X X X X X X X X X X X X X X X
295 | X XX XX X X X X X X X X X X X X X X X X X
39| X X X X X X X X X X X X X X X X X X X X X X
326 | X XX XX X X X X X X X X X X X X X 50 25 X X
3381 X 306 X X X 102 X X X 102 X X X X X 204 X X X 1224 3.06 X
377 | X X X X X X X 19 X X X X X X 39 X X X 98 39 X X
4771 X XX XX X X X X X X X X X X X X X X X X X
489 | X X X X X X X X X X X X X X X X X X X X X X
601 X 125 X X X X X X X X X X X 833 X 2083 X X X 375 X X
676 | X 1957 X X X 072 X X 145 072 X X X 072 87 145 X X 652 X 072 145
755 X 11.76 X X X X X X X X X X X X 882 X X X X 294 X X
798 | X X X X X X X X 100 X X X X X X X X X X 1429 X X

TABLE VIII: Answer to RQ3: Association of Security Weak-
nesses

GITHUB GITLAB MODELZOO
CWEs TRAIN TEST | TRAIN TEST | TRAIN TEST
CWE-61 0 1 0 0 0 0
CWE-77 27 203 36 63 34 27
CWE-78 3 54 50 53 5 0
CWE-79 0 0 0 0 1 1
CWE-89 1 5 0 0 0 0
CWE-91 36 61 8 12 6 4
CWE-220 0 2 0 0 0 0
CWE-242 0 1 0 5 0 1
CWE-259 8 46 12 17 9 8
CWE-269 0 0 2 0 3 1
CWE-285 3 8 8 12 2 3
CWE-295 0 0 1 1 0 0
CWE-319 0 2 0 0 0 0
CWE-326 10 26 10 7 2 2
CWE-338 22 123 134 136 45 46
CWE-377 28 56 56 50 37 23
CWE-477 0 4 0 0 0 0
CWE-489 0 0 0 0 0 0
CWE-601 20 50 38 29 19 14
CWE-676 109 437 187 208 88 55
CWE-755 41 137 21 33 13 22
CWE-798 8 46 12 17 9 8
Total 250 914 483 522 210 169

Prioritizing Efforts for Security-focused Code Reviews:
As conducting code reviews is a resource-intensive activity
[45], we advocate practitioners to prioritize code review efforts
using our co-location analysis presented in Tables V, VI and
VII. For example, as a rule of thumb, if a Python script used
in a SLP contains an instance of CWE-77, i.e., command
injection, they can also inspect the script for an instance of
CWE-676, i.e., use of a potentially dangerous function as
there is a >= 50% chance of a CWE instance co-occurring
with an instance of CWE-77. In Table VIII, we observe 210
train_script and 169 test_script to have at least one security
weakness and advocate practitioners to prioritize code review
efforts for training and testing scripts to secure the production-
level ML models.

Implications for researchers: Our findings also have im-
plications for future research: Survival Analysis: A security
weakness that persists for a long time can facilitate attackers.
Researcher can use survival analysis techniques [31] to analyze
the amount of time our identified security weaknesses persist
in the same script for SLPs. New Attack Identification: Our
identified security weaknesses can be leveraged to identify
new. attacks. Researchers can build upon our findings to
explore which characteristics correlate with Python scripts
with security weaknesses. If certain characteristics correlate
with scripts that have weaknesses, then practitioners can
prioritize their inspection efforts for scripts that exhibit those
characteristics. Vulnerability Research: Our empirical study
provides the groundwork to conduct further research in the
domain of vulnerability research for ML. Our identified se-
curity weaknesses focus on supervised learning, which could
be applicable for reinforcement learning and unsupervised
learning.

VII. THREATS TO VALIDITY

We present the limitations of our paper in this section.
Conclusion Validity: Our identified security alerts and the
corresponding CWEs are limited to the scripts we used in
Section III-A. We mitigate these limitations by inspecting
36,022 scripts. Like any other static analysis tool, the Bandit
tool is susceptible to generate false positives [12]. We mitigate
this limitation by mapping each security issue identified by the
Bandit tool to corresponding CWEs in Section III-B1. Also,
the mapping between the security weaknesses and potential
CWE indexes is based upon the authors’ judgment and sub-
jective view. We mitigate the limitation by using a rater who
is not an author of the paper.

External Validity: Our empirical study is limited to the
datasets that we analyzed. Our datasets are constructed by
mining OSS repositories. Investigating projects from other



proprietary domains might reveal types not reported in our
paper. Also, our findings are limited to Python-based projects.

VIII. CONCLUSION

SLPs may have security weaknesses, that make SLPs sus-
ceptible to security attacks. Practitioners need to be aware
of the security weaknesses to secure SLPs. We conduct an
empirical study to identify the security weaknesses that occur
in SLPs. We identify 22 types of security weaknesses in
SLPs. We observe CWE-676: Use of Potentially Dangerous
Function to be the most frequent CWE. We observe security
weaknesses to co-locate in Python scripts. Furthermore, of
the identified 3,964 security weaknesses, 23.79% and 40.49%
respectively, appear for Python scripts that are used to train and
test models. Our research study provides empirical evidence
on how frequently security weaknesses appear in SLPs, which
necessitates pro-active detection and mitigation. We have pro-
vided guidelines on how our analysis can inform practitioners
to take actions for mitigating security weaknesses in SLPs.
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